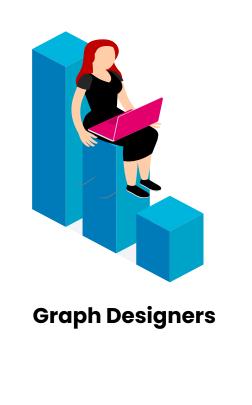


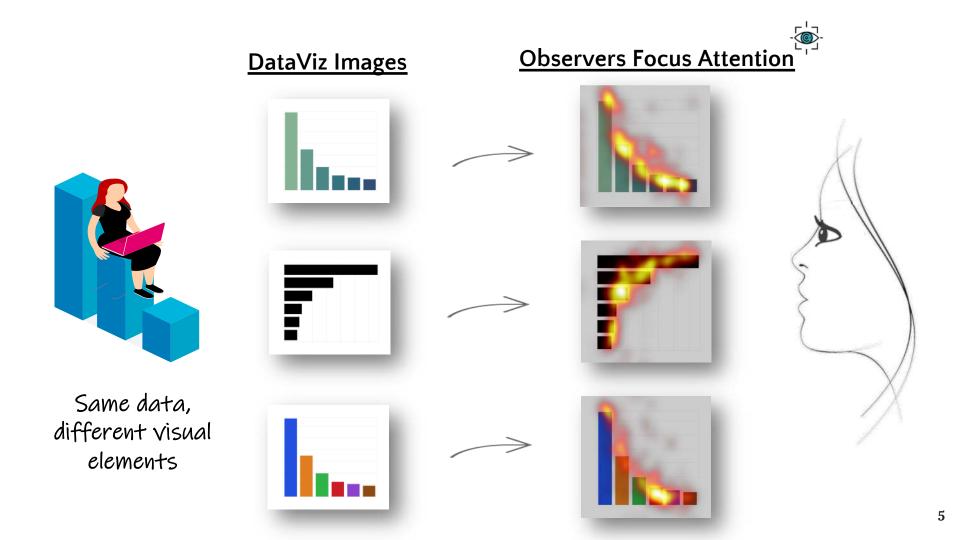
Saliency Prediction in the Data Visualization Design Process

Luisa Fernanda Barrera León


Advisor: Prof. Fulvio Corno Referees: Leonardo Floréz Valencia Dan Witzner Hansen

"Design graphic representations of data by taking into account **human sensory capabilities** in such a way that important data elements and data patterns can be quickly perceived." by Colin Ware [1]

DataViz



mikanii

6

Human Vision Attention

- Research Aim

Integrate visual-cognitive concepts into the Data Visualization Design Process and tools. We intend to bring those concepts to the graph designer's context and provide insight into how their design choices might affect the observer's perception.

Research Development Process

InfoVis and Human Attention

Saliency Prediction Models

Saliency Prediction for DataViz Design Process

Conclusions

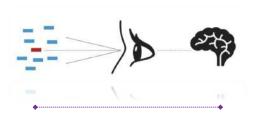
Research Development Process

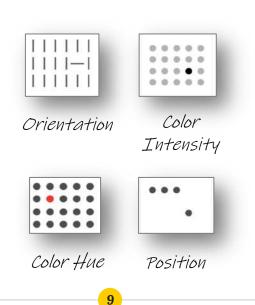
InfoVis and Human Attention

- Key Concepts
- Literature Review

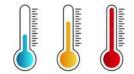
Saliency Prediction Models

Saliency Prediction for DataViz Design Process


Conclusions


Preattentive Process

Decides what visual attributes are **offered up** to our attention and easy to find in the next fixation

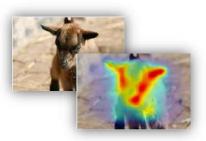

[21]

Preattentive Attributes

Key Concepts

Saliency

The degree to which a target stimulus "*pops out*" in a set of stimuli." [22]



Saliency Prediction

Computer Models that imitate human attention process

Key Concepts

10

How is the preattentive visual process used in information visualization? (RQ)

Oriented to improve the observer's cognitive process in graph comprehension

Sources

• IEEExplore

- ACM
- SpringerLink
- ScienceDirect

Key Words

Preattentive

Pre-attentive

- Data Highlighting
- InfoVis
- DataViz

Range of Years

From 2010 to 2021

Filtering Topics

Computer Sciences

• HCI

Literature Review I

- InfoVis
- DataViz

Filtering Questions

- Improve understanding?
- Draw observer attention
- Cognitive influence
- Saliency models

Literature Review II

Preattentive Uses in InfoVis:

1. For Design

 Design elements manipulation to achieve different goals (*e.g., identifying relevant data*).

2. For Measurement

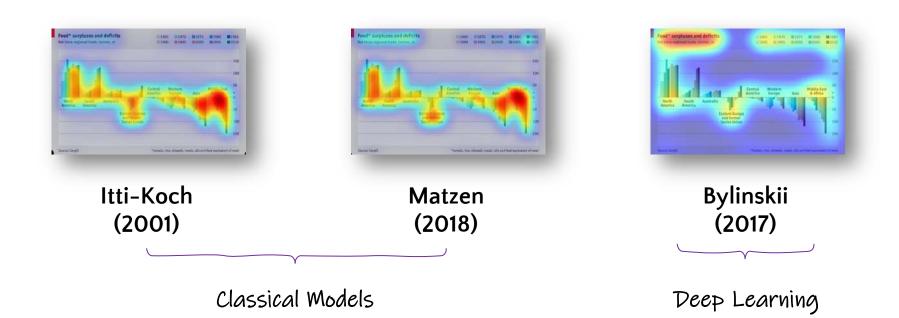
 Assess attention on portions of a graph or determine the impact of preattentive attributes.

Insights

- Highlighting and Data enhancement
- Implicit and Unconscious design decisions
- Graph designer oblivion
- Saliency Models

Research Development Process

InfoVis and Human Attention


Saliency Prediction Models

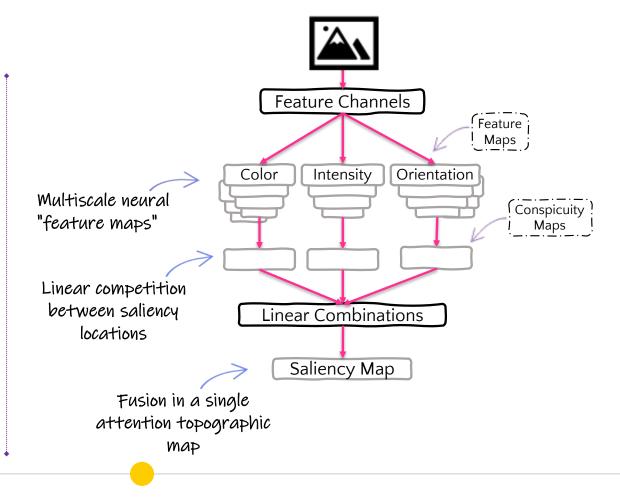
- Saliency Models Fundamentals
- Saliency Models + DataViz
- Saliency Model Validation

Saliency Prediction for DataViz Design Process

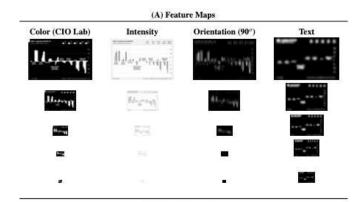
Conclusions

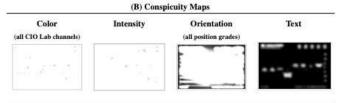
Saliency Models in DataViz

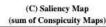
Itti-Koch 2001

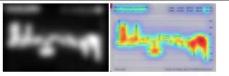

Biologically conceivable

Bottom-up Classical Model


Natural Images Root Data Set


Markov Chains Strategy


Matlab Code Language



Saliency Prediction Process

Matzen 2018

Biologically conceivable

Bottom-up + Top-down Classical Model

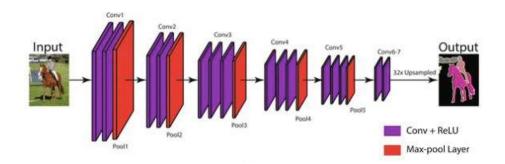
MASSVIS + Natural Images Root Data Set

Modified Itti-Koch + Text Detection

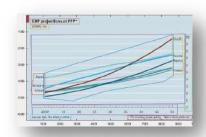
Strategy

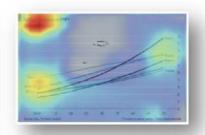
Matlab

Code Language


Computational conceivable

Deep Learning Model Classification


MASSVIS Root Data Set


Fully Convolutional Networks Strategy

Python + Caffe DL Code Language

Fully Convolutional Networks (FCN32)

Relative Importance

(Higher-level Features)

Concerns about the Saliency Models' behavior:

- 1. Significant imbalance in the attention given to Text elements.
- 2. Suitability of the dataset for training DataViz models (*e.g.,* several context elements).
- 3. Some representative features, such as position, are not considered in DataViz saliency models.

Which is the best-performing model?

Even if the graph's visual elements are varied (or removed).

Research Development Process

InfoVis and Human Attention

Saliency Prediction Models

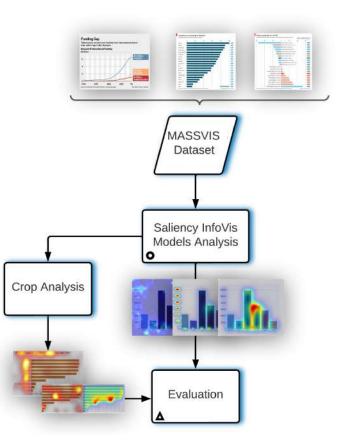
- Saliency Models Fundamentals
- Saliency Models + DataViz
- Saliency Model Validation

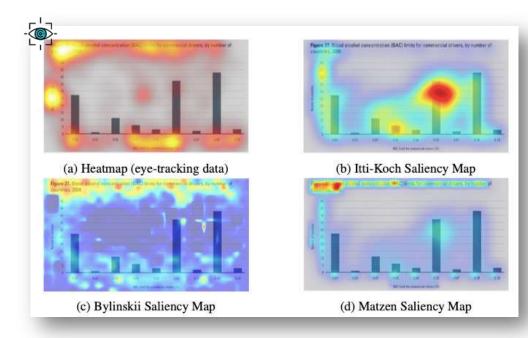
Saliency Prediction for DataViz Design Process

Conclusions

First Experiment

Scopes


- Confirming the model's performance with the frequently used dataset.
- Detailing how the models behaved by predicting the graph saliency.


Dataset

MASSVIS: Massachusetts (Massive) Visualization Dataset

Metrics typically used in the Saliency Prediction:

- AUC (Area Under the ROC –Receive Operating Characteristics–)
- CC (Pearson's Correlation Coefficient)
- NSS (Normalized Scanpath Saliency)

Insights:

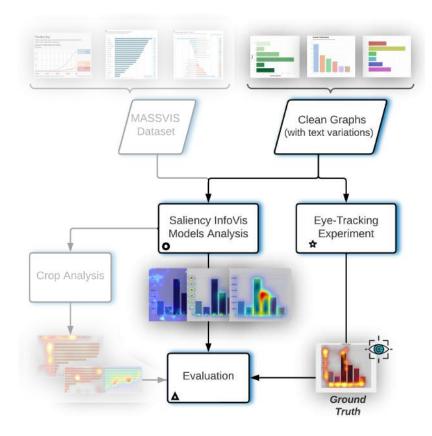
- The results were **consistent** with previous studies.
- Matzen model had the **highest** score of the three metrics.
- Most of the attention goes to the textual elements, and Matzen and Bylinskii models accurately address this.

First Experiment Results

21

Second Experiment

Scope


• Validate the model's performance with graphs without design elements distractions (e.g., logos, icons) and varying some design elements.

Images

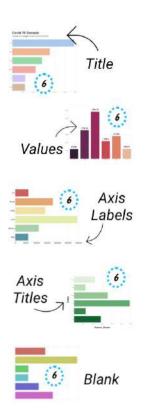
• Clean Graphs dataset

Metrics for Saliency

• AUC, CC and NSS

Clean Graphs Dataset

30 images

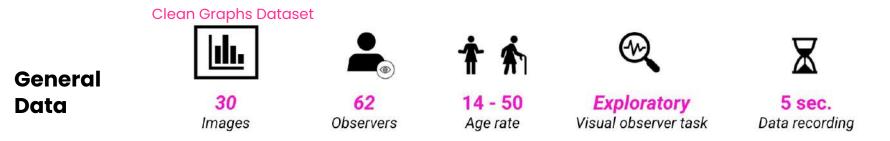

Bar Charts DataViz Technique

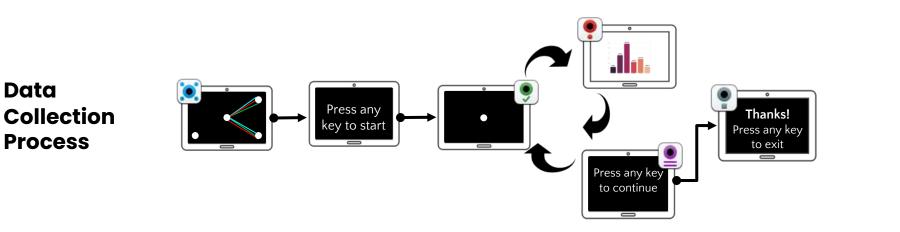
Covid-19 Dataset

Position, Color, Orientation and Textual Elements. Variations

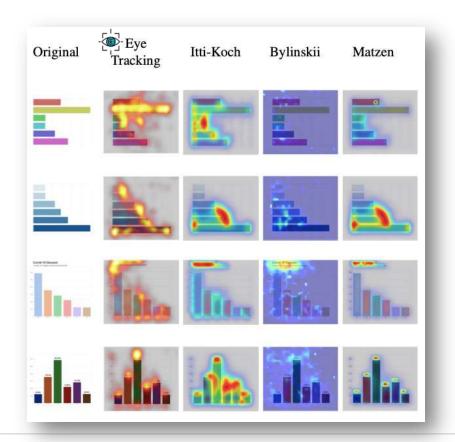
Python Seaborn library

Textual Elements




23

Position **Big Bar** Sorted Unsorted Center **Color Palettes** 6 Diverging Sequential Qualitative **Orientation** Horizontal Vertical



·····

Example Saliency Maps

Insights

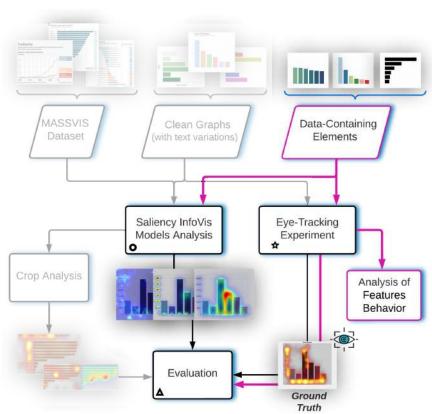
- Text is a visual component that is **highly influential**, for better or worse, in all three model's performance.
- Orientation, position and Color influence the model's accuracy, but less than text elements.
- Blank graph (no text), was where the models had the **lowest scores**.

Second Experiment Results (Clean Graphs)

25

Third Experiment

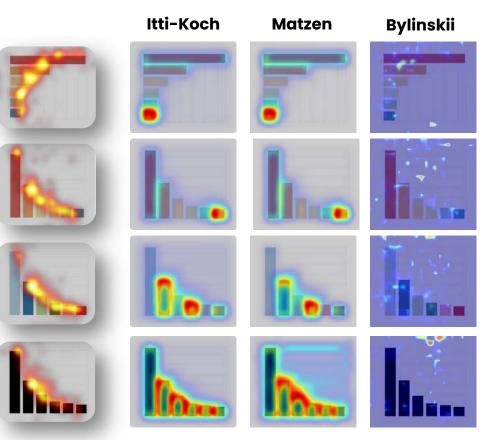
Scope


• Deepen the behavior of the models only in the elements that represent the data (no textual elements).

Images

• Clean Graph (without text)

Metrics for Saliency


• AUC, CC and NSS

Third Experiment Results

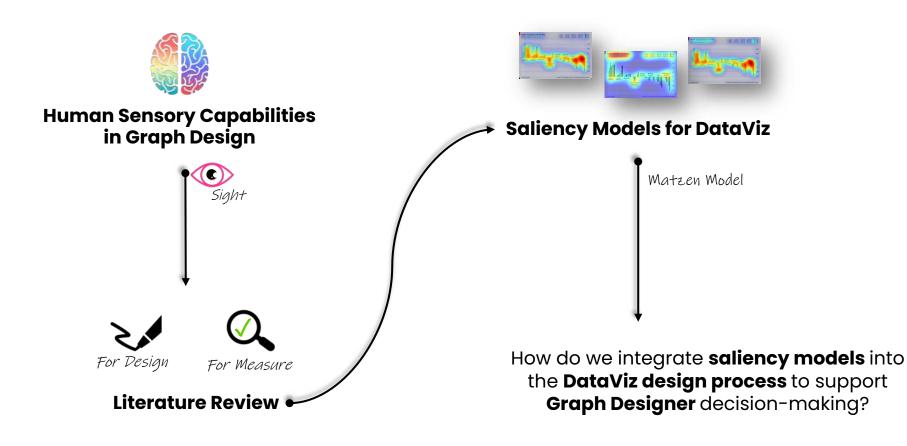
Models Comparison

Model	Experiments	CC		NSS		AUC	
		t	р	t	р	t	р
Bylinskii	MASSVIS vs. Clean Graph	7.50	1.06e-09	5.26	2.30e-06	6.13	9.81e-08
	Clean Graph vs. Data-Contained	6.28	9.31e-08	5.94	7.44e-07	5.60	3.08e-06
Matzen	MASSVIS vs. Clean Graph	0.66	0.51	0.49	0.63	2.74	0.008
	Clean Graph vs. Data-Contained	0.097	0.92	0.74	0.46	-1.24	0.23
Itti-Koch	MASSVIS vs. Clean Graph	-1.90	0.063	-2.40	0.020	-2.70	0.01
	Clean Graph vs. Data-Contained	-3.12	0.003	-2.03	0.052	-1.05	0.30

t-test

- Bylinskii is strongly attached to the training images.
- Itti-Koch, the less context information (distractors), the better the saliency prediction.
- Matzen is the model that demonstrated the most stable behavior during the three experiments.

Research Development Process


InfoVis and Human Attention

Saliency Prediction Models

Saliency Prediction for DataViz Design Process

- Saliency as Design Tool
- Saliency as Measurement Tool
- Experts Validation

Conclusions

Summary

31

Development Tools

Graph Designers

<u>Design Tool</u>

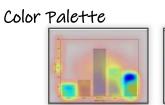
Systematic variation of Visual Elements to highlight relevant data.

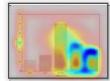
Measurement Tool

Saliency Maps into graph design commonly process to validate design decisions.

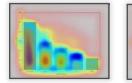
1. Inputs:

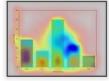
Dataset

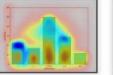


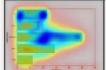

Data Position Data Orientation

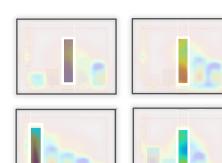
Color Palette


Design Tool


3. Saliency Map Generation:

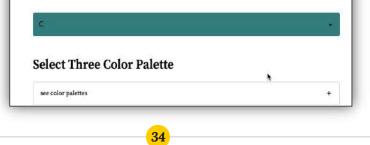


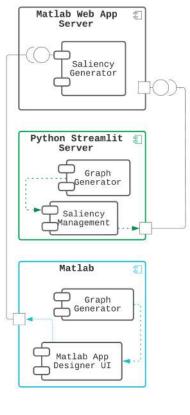

Data Position


Data Orientation

3. Graph Selection

Winner


Saliency as Design Tool


Data

	LANGUAGES	USUARIOS
0	с	23
1	C++	17
2	PYTHON	89
3	JAVA	29
4	PHP	12

Data to Highlight

Wich data would you like to highlight?

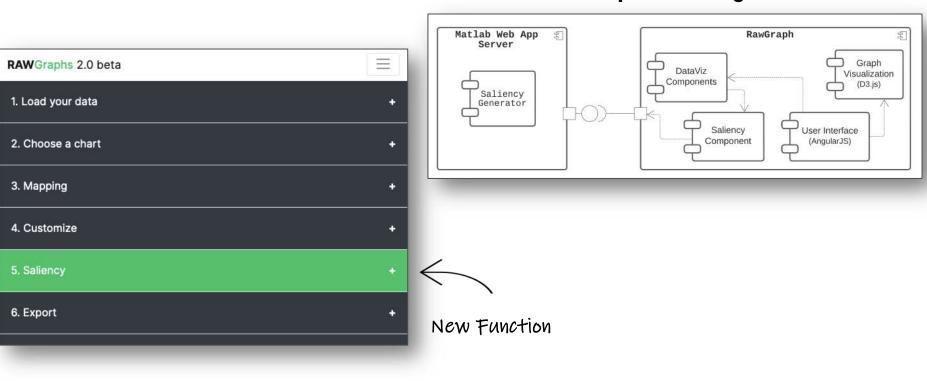
Components Diagram

Development Tools

Graph Designers

Design Tool

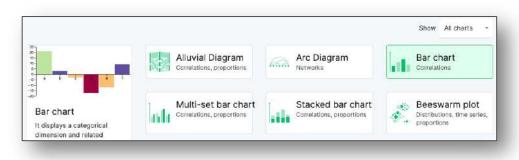
Systematic variation of Visual Elements to highlight relevant data.


Measurement Tool

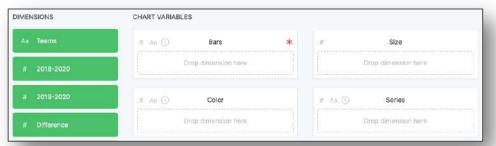
Saliency Maps into graph design common process to validate design decisions.

– Measurement Tool

Components Diagram


Measurement Tool

1. Input


~

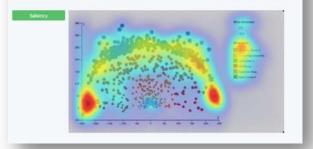
Dataset

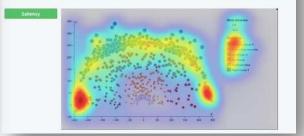
2. Graph Selection

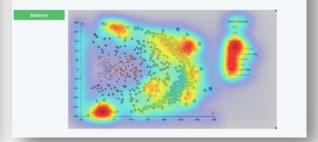
3. Mapping

4. Customize

ARTBOARD		-
Midth (px)	805	ō
Height (px)	600	Ô
Background	#FFFFFF	
Vlargin (top)	20	÷
Vlargin (right)	10	Ô
Vlargin (bottom)	20	ō
Margin (left)	50	0
Show legend	D No	
Legend width	200	
CHART		+
SERIES		+
COLORS		+


5. Saliency Map Generation


Choose a chi	ırt	_							
3. Mapping									
4. Customize									
ARTBOARD		•	900 J Nut	neti_Decesi (sum)					
CHART			280 -						
Padding between	bara (j. 1	ō	200 -						
Show bars horizo	ntally 🐑 No		240 -						
Sort bars by	Total valu	e (as ¢	220 -						
SERIES			100 -						
COLORS			100 -						
Color scale	Ordinal		140 -						
	oromal	1	120 -						
Color scheme		-	100 -						
Brazil	#1F77B4		80 -						
India	#FF7F0E		42 -						
italy	#2CA02C		20 -						
Mexico	#D62728		0	Tary .		Maxico			-
UK	#946780			Taly	UK	Mexico	India	Brazit	UŠA
USA	#8C564B								
	c	4							



Examples

Development Tools

xderts

Validation

Graph Designers

<u>Design Tool</u>

Systematic variation of Visual Elements to highlight relevant data.

Measurement Tool

Saliency Maps into graph design commonly process to validate design decisions.

- Higher Education/Research Information
 Visualization, HCI
- Computational Biology

ACADEMIA • Informatics

- Data Visualization Expert
- Software Development/Data Visualization
- Project Manager in Business Intelligence

INDUSTRY

Design Tool

1. Open Questions (relevant data highlighting)

2. Tool Demo (both versions)

3. Evaluation using Heuristics instruments:

- USE (Usefulness, Satisfaction, and Ease of use)
- QUIS (Questionnaire for User Interface Satisfaction)

Measurement Tool

1. Open Questions (area attention detection)

2. Tool Demo

3. Evaluation using Heuristics instrument:

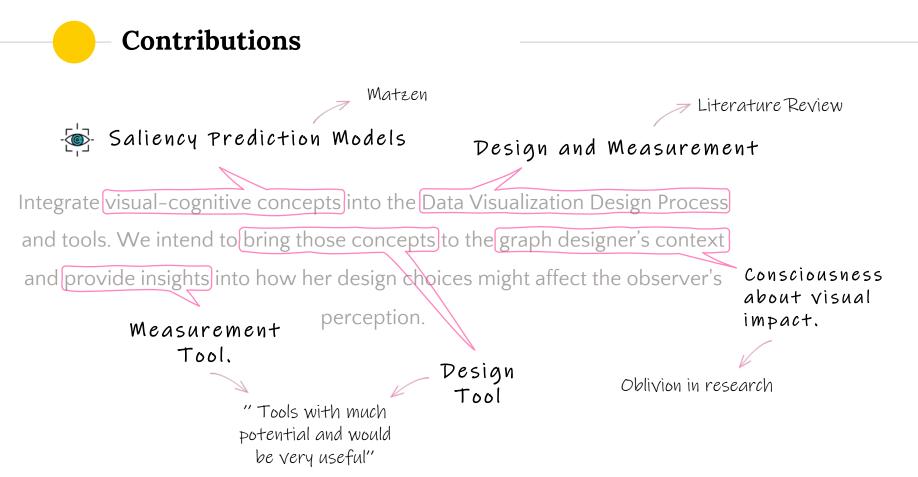
• TAM (Perceived Usefulness and Ease of Use)

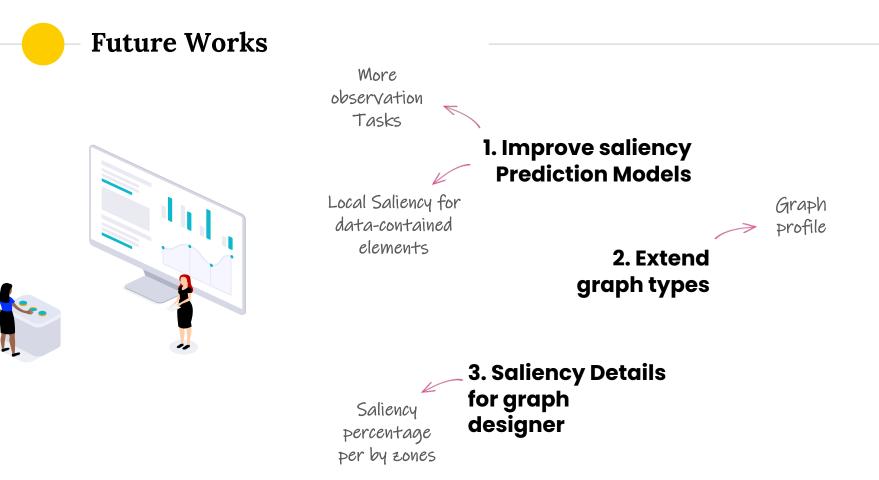
Experts Evaluation - Discussion

- "Tools with much **potential** and would be very useful"
- Attention behavior (patterns) could be **learned** if the tools are used for an extended period.
- The second benefit is expert-oriented since there may be an acquired data **visualization bias** over time
- Measurement Tool should provide **more information** about saliency
- Extend Design Tool with **other visualization** types.

Results demonstrated that both tools are a *relevant* and *valuable* approaches.

Research Development Process


InfoVis and Human Attention


Saliency Prediction Models

Saliency Prediction for DataViz Design Process

Conclusions

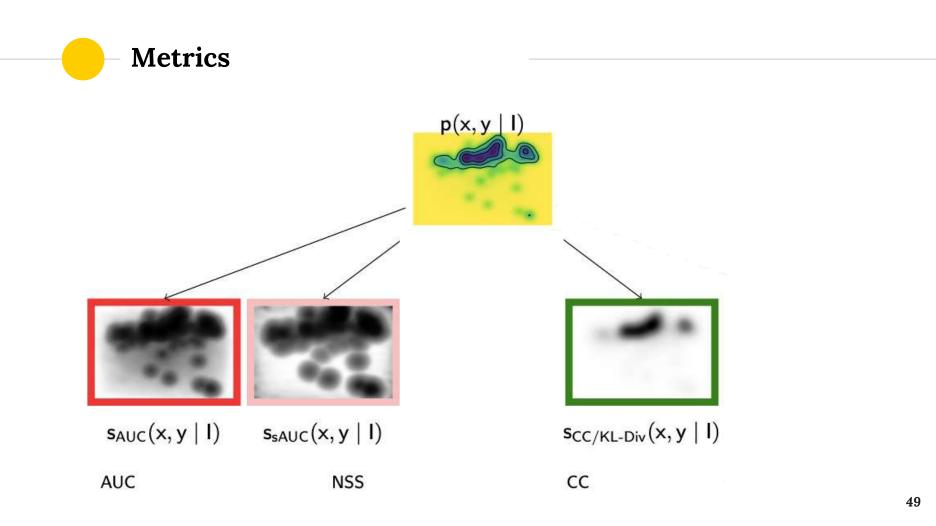
- Contributions
- Future Works

Thanks!

Luisa Barrera-León Ph.D.

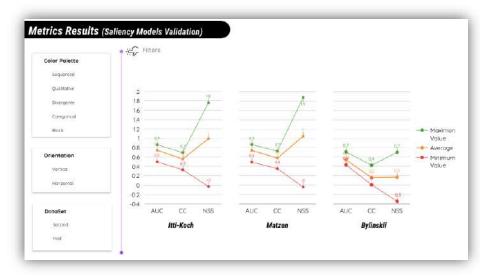
<u>luifabelo86@gmail.com</u> <u>luisa.barrera@polito.it</u>

Fulvio Corno


Advisor

fulvio.corno@polito.it

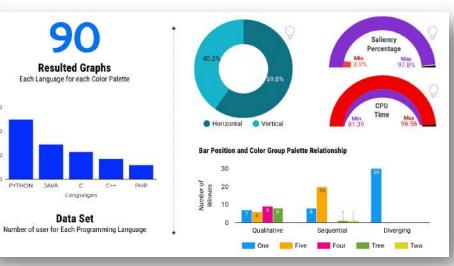
Feature Integration Model Evaluation Metrics



https://bit.ly/2sdExpe Dashboard

https://bit.ly/data-elements results

https://bit.ly/DesignTool CovidResutls



https://bit.ly/DesignTool LanguResutls

60

Number Users

0

Design Tool

3. Evaluation using Heuristics instruments:

- USE (Usefulness, Satisfaction, and Ease of use): measures the subjective usability of a product or service. Questions: Perceived Usefulness, Perceived Easy to Use, and Perceived Satisfaction.
- QUIS (Questionnaire for User Interface Satisfaction): focuses on how an interface is evaluated, and it was created based on Shneiderman's list of five different types of dependent measures. Questions: Overall Reaction to the Software.

Measurement Tool

3. Evaluation using Heuristics instrument:

• **TAM** (Perceived Usefulness and Ease of Use): the model intends to forecast the future use of a product (expected usefulness and ease-of-use as viewed before any use) rather than to rate the actual user experience.

Experts Validation - Results

Table 8.2 QUIS Academia Experts

Scale	Average Rating	Median Score
Terrible 0 9 Wonderful	8,3	8,0
Difficult 0 9 Easy	7,3	7,0
Frustrating 0 9 Satisfying	8,3	8,0
Inadequate 0 9 Adequate	7	8,0
Dull 0 9 Stimulating	7,7	9,0
Rigid 0 9 Flexible	5,3	8,0

Table 8.3 QUIS Industrial Experts results for Design Tool validation

Scale	Average Rating	Median Score
Terrible 0 9 Wonderful	7,3	8
Difficult 0 9 Easy	6	7
Frustrating 0 9 Satisfying	6,3	8
Inadequate 0 9 Adequate	6,3	8
Dull 0 9 Stimulating	7	9
Rigid 0 9 Flexible	7,3	8

(a) TAM Perceived Usefulness (PU)

(b) TAM Perceived Ease of Use (PEU)